Characterization of the variability in the O+B eclipsing binary HD 165246


الملخص بالإنكليزية

O-stars are known to experience a wide range of variability mechanisms originating at both their surface and their near-core regions. Characterization and understanding of this variability and its potential causes are integral for evolutionary calculations. We use a new extensive high-resolution spectroscopic data set to characterize the variability observed in both the spectroscopic and space-based photometric observations of the O+B eclipsing binary HD~165246. We present an updated atmospheric and binary solution for the primary component, involving a high level of microturbulence ($13_{-1.3}^{+1.0},$km,s$^{-1}$) and a mass of $M_1=23.7_{-1.4}^{+1.1}$~M$_{odot}$, placing it in a sparsely explored region of the Hertzsprung-Russell diagram. Furthermore, we deduce a rotational frequency of $0.690pm 0.003,$d$^{-1}$ from the combined photometric and line-profile variability, implying that the primary rotates at 40% of its critical Keplerian rotation rate. We discuss the potential explanations for the overall variability observed in this massive binary, and discuss its evolutionary context.

تحميل البحث