Coalescence of Andreev bound states on the surface of a chiral topological semimetal


الملخص بالإنكليزية

We experimentally investigate the magnetic field dependence of Andreev transport through a region of proximity-induced superconductivity in CoSi topological chiral semimetal. With increasing parallel to the CoSi surface magnetic field, the sharp subgap peaks, associated with Andreev bound states, move together to nearly-zero bias position, while there is only monotonous peaks suppression for normal to the surface fields. The zero-bias $dV/dI$ resistance value is perfectly stable with changing the in-plane magnetic field. As the effects are qualitatively similar for In and Nb superconducting leads, they reflect the properties of proximized CoSi surface. The Andreev states coalescence and stability of the zero-bias $dV/dI$ value with increasing in-plane magnetic field are interpreted as the joined effect of the strong SOC and the Zeeman interaction, known for proximized semiconductor nanowires. We associate the observed magnetic field anisotropy with the recently predicted in-plane polarized spin texture of the Fermi arcs surface states.

تحميل البحث