Transition space for the continuity of the Lyapunov exponent of quasiperiodic Schrodinger cocycles


الملخص بالإنكليزية

We construct discontinuous point of the Lyapunov exponent of quasiperiodic Schrodinger cocycles in the Gevrey space $G^{s}$ with $s>2$. In contrast, the Lyapunov exponent has been proved to be continuous in the Gevrey space $G^{s}$ with $s<2$ cite{klein,cgyz}. This shows that $G^2$ is the transition space for the continuity of the Lyapunov exponent.

تحميل البحث