Learning State Representations from Random Deep Action-conditional Predictions


الملخص بالإنكليزية

In this work, we study auxiliary prediction tasks defined by temporal-difference networks (TD networks); these networks are a language for expressing a rich space of general value function (GVF) prediction targets that may be learned efficiently with TD. Through analysis in an illustrative domain we show the benefits to learning state representations of exploiting the full richness of TD networks, including both action-conditional predictions and temporally deep predictions. Our main (and perhaps surprising) result is that deep action-conditional TD networks with random structures that create random prediction-questions about random features yield state representations that are competitive with state-of-the-art hand-crafted value prediction and pixel control auxiliary tasks in both Atari games and DeepMind Lab tasks. We also show through stop-gradient experiments that learning the state representations solely via these unsupervised random TD network prediction tasks yield agents that outperform the end-to-end-trained actor-critic baseline.

تحميل البحث