Nonequilibrium dynamics in deconfined quantum critical point revealed by imaginary-time evolution


الملخص بالإنكليزية

As proposed to describe putative continuous phase transitions between two ordered phases, the deconfined quantum critical point (DQCP) goes beyond the prevalent Landau-Ginzburg-Wilson (LGW) paradigm since its critical theory is not expressed in terms of the order parameters characterizing either state, but involves fractionalized degrees of freedom and an emergent symmetry. So far, great efforts have been spent on its equilibrium properties, but the nonequilibrium properties therein are largely unknown. Here we study the nonequilibrium dynamics of the DQCP via the imaginary-time evolution in the two-dimensional (2D) J-Q$_3$ model. We discover fascinating nonequilibrium scaling behaviors hinging on the process of fractionization and the dynamics of emergent symmetry associated with two length scales. Our findings not only constitute a new realm of nonequilibrium criticality in DQCP, but also offer a controllable knob by which to investigate the dynamics in strongly correlated systems.

تحميل البحث