Challenging Social Media Threats using Collective Well-being Aware Recommendation Algorithms and an Educational Virtual Companion


الملخص بالإنكليزية

Social media (SM) have become an integral part of our lives, expanding our inter-linking capabilities to new levels. There is plenty to be said about their positive effects. On the other hand however, some serious negative implications of SM have repeatedly been highlighted in recent years, pointing at various SM threats for society, and its teenagers in particular: from common issues (e.g. digital addiction and polarization) and manipulative influences of algorithms to teenager-specific issues (e.g. body stereotyping). The full impact of current SM platform design -- both at an individual and societal level -- asks for a comprehensive evaluation and conceptual improvement. We extend measures of Collective Well-Being (CWB) to SM communities. As users relationships and interactions are a central component of CWB, education is crucial to improve CWB. We thus propose a framework based on an adaptive social media virtual companion for educating and supporting the entire students community to interact with SM. The virtual companion will be powered by a Recommender System (CWB-RS) that will optimize a CWB metric instead of engagement or platform profit, which currently largely drives recommender systems thereby disregarding any societal collateral effect. CWB-RS will optimize CWB both in the short term, by balancing the level of SM threat the students are exposed to, as well as in the long term, by adopting an Intelligent Tutor System role and enabling adaptive and personalized sequencing of playful learning activities. This framework offers an initial step on understanding how to design SM systems and embedded educational interventions that favor a more healthy and positive society.

تحميل البحث