Roadmap on Integrated Quantum Photonics


الملخص بالإنكليزية

In the 1960s, computer engineers had to address the tyranny of numbers problem in which improvements in computing and its applications required integrating an increasing number of electronic components. From the first computers powered by vacuum tubes to the billions of transistors fabricated on a single microprocessor chip today, transformational advances in integration have led to remarkable processing performance and new unforeseen applications in computing. Today, quantum scientists and engineers are facing similar integration challenges. Research labs packed with benchtop components, such as tunable lasers, tables filled with optics, and racks of control hardware, are needed to prepare, manipulate, and read out quantum states from a modest number of qubits. Analogous to electronic circuit design and fabrication nearly five decades ago, scaling quantum systems (i.e. to thousands or millions of components and quantum elements) with the required functionality, high performance, and stability will only be realized through novel design architectures and fabrication techniques that enable the chip-scale integration of electronic and quantum photonic integrated circuits (QPIC). In the next decade, with sustained research, development, and investment in the quantum photonic ecosystem (i.e. PIC-based platforms, devices and circuits, fabrication and integration processes, packaging, and testing and benchmarking), we will witness the transition from single- and few-function prototypes to the large-scale integration of multi-functional and reconfigurable QPICs that will define how information is processed, stored, transmitted, and utilized for quantum computing, communications, metrology, and sensing. This roadmap highlights the current progress in the field of integrated quantum photonics, future challenges, and advances in science and technology needed to meet these challenges.

تحميل البحث