Spanning trees in dense directed graphs


الملخص بالإنكليزية

In 2001, Komlos, Sarkozy and Szemeredi proved that, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex graph with minimum degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex tree with maximum degree at most $cn/log n$. We prove the corresponding result for directed graphs. That is, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex directed graph with minimum semi-degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex oriented tree whose underlying maximum degree is at most $cn/log n$. As with Komlos, Sarkozy and Szemeredis theorem, this is tight up to the value of $c$. Our result improves a recent result of Mycroft and Naia, which requires the oriented trees to have underlying maximum degree at most $Delta$, for any constant $Delta$ and sufficiently large $n$. In contrast to the previous work on spanning trees in dense directed or undirected graphs, our methods do not use Szemeredis regularity lemma.

تحميل البحث