Radiative scale-height and shadows in protoplanetary disks


الملخص بالإنكليزية

Planets form in young circumstellar disks called protoplanetary disks. However, it is still difficult to catch planet formation in-situ. Nevertheless, from recent ALMA/SPHERE data, encouraging evidence of the direct and indirect presence of embedded planets has been identified in disks around young stars: co-moving point sources, gravitational perturbations, rings, cavities, and emission dips or shadows cast on disks. The interpretation of these observations needs a robust physical framework to deduce the complex disk geometry. In particular, protoplanetary disk models usually assume the gas pressure scale-height given by the ratio of the sound speed over the azimuthal velocity $H/r = c_{srm }/v_{rm k}$. By doing so, textit{radiative} pressure fields are often ignored, which could lead to a misinterpretation of the real vertical structure of such disks. We follow the evolution of a gaseous disk with an embedded Jupiter mass planet through hydrodynamical simulations, computing the disk scale-height including radiative pressure, which was derived from a generalization of the stellar atmosphere theory. We focus on the vertical impact of the radiative pressure in the vicinity of circumplanetary disks, where temperatures can reach $gtrsim 1000$ K for an accreting planet, and radiative forces can overcome gravitational forces from the planet. The radiation-pressure effects create a vertical optically thick column of gas and dust at the proto-planet location, casting a shadow in scattered light. This mechanism could explain the peculiar illumination patterns observed in some disks around young stars such as HD 169142 where a moving shadow has been detected, or the extremely high aspect-ratio $H/r sim 0.2$ observed in systems like AB Aur and CT Cha.

تحميل البحث