The modulational instability (MI) criteria of dust-ion-acoustic (DIA) waves (DIAWs) have been investigated in a four-component pair-ion plasma having inertial pair-ions, inertialess non-thermal non-extensive electrons, and immobile negatively charged massive dust grains. A nonlinear Schr{o}dinger equation (NLSE) is derived by using reductive perturbation method. The nonlinear and dispersive coefficients of the NLSE can predict the modulationally stable and unstable parametric regimes of DIAWs and associated first and second order DIA rogue waves (DIARWs). The MI growth rate and the configuration of the DIARWs are examined, and it is found that the MI growth rate increases (decreases) with increasing the number density of the negatively charged dust grains in the presence (absence) of the negative ions. It is also observed that the amplitude and width of the DIARWs increase (decrease) with the negative (positive) ion mass. The implications of the results to laboratory and space plasmas are briefly discussed.