Space Shift Keying with Reconfigurable Intelligent Surfaces: Phase Configuration Designs and Performance Analysis


الملخص بالإنكليزية

Reconfigurable intelligent surface (RIS)-assisted transmission and space shift keying (SSK) appear as promising candidates for future energy-efficient wireless systems. In this paper, two RIS-based SSK schemes are proposed to efficiently improve the error and throughput performance of conventional SSK systems, respectively. The first one, termed RIS-SSK with passive beamforming (RIS-SSK-PB), employs an RIS for beamforming and targets the maximization of the minimum squared Euclidean distance between any two decision points. The second one, termed RIS-SSK with Alamouti space-time block coding (RIS-SSK-ASTBC), employs an RIS for ASTBC and enables the RIS to transmit its own Alamouti-coded information while reflecting the incident SSK signals to the destination. A low-complexity beamformer and an efficient maximum-likelihood (ML) detector are designed for RIS-SSK-PB and RIS-SSK-ASTBC, respectively. Approximate expressions for the average bit error probabilities of the source and/or the RIS are derived in closed-form assuming ML detection. Extensive computer simulations are conducted to verify the performance analysis. Results show that RIS-SSK-PB significantly outperforms the existing RIS-free and RIS-based SSK schemes, and RIS-SSK-ASTBC enables highly reliable transmission with throughput improvement.

تحميل البحث