Study on Compressed Sensing of Action Potential


الملخص بالإنكليزية

Compressive sensing (CS) is a signal processing technique that enables sub-Nyquist sampling and near lossless reconstruction of a sparse signal. The technique is particularly appealing for neural signal processing since it avoids the issues relevant to high sampling rate and large data storage. In this project, different CS reconstruction algorithms were tested on raw action potential signals recorded in our lab. Two numerical criteria were set to evaluate the performance of different CS algorithms: Compression Ratio (CR) and Signal-to-Noise Ratio (SNR). In order to do this, individual CS algorithm testing platforms for the EEG data were constructed within MATLAB scheme. The main considerations for the project were the following. 1) Feasibility of the dictionary 2) Tolerance to non-sparsity 3) Applicability of thresholding or interpolation.

تحميل البحث