The input-output behaviour of the Wiener neuronal model subject to alternating input is studied under the assumption that the effect of such an input is to make the drift itself of an alternating type. Firing densities and related statistics are obtained via simulations of the sample-paths of the process in the following three cases: the drift changes occur during random periods characterized by (i) exponential distribution, (ii) Erlang distribution with a preassigned shape parameter, and (iii) deterministic distribution. The obtained results are compared with those holding for the Wiener neuronal model subject to sinusoidal input