We present the analysis of XMM-Newton European Photon Imaging Camera (EPIC) observations of the nova shell IPHASX J210204.7$+$471015. We detect X-ray emission from the progenitor binary star with properties that resemble those of underluminous intermediate polars such as DQ Her: an X-ray-emitting plasma with temperature of $T_mathrm{X}=(6.4pm3.1)times10^{6}$ K, a non-thermal X-ray component, and an estimated X-ray luminosity of $L_mathrm{X}=10^{30}$ erg s$^{-1}$. Time series analyses unveil the presence of two periods, the dominant with a period of $2.9pm0.2$ hr, which might be attributed to the spin of the white dwarf, and a secondary of $4.5pm0.6$ hr that is in line with the orbital period of the binary system derived from optical observations. We do not detect extended X-ray emission as in other nova shells probably due to its relatively old age (130-170 yr) or to its asymmetric disrupted morphology which is suggestive of explosion scenarios different to the symmetric ones assumed in available numerical simulations of nova explosions.