Response to Comment on: Tunneling in DNA with Spin Orbit coupling


الملخص بالإنكليزية

The comment by O. Entin-Wohlman, A. Aharony, and Y. Utsumi, on our paper S. Varela, I. Zambrano, B. Berche, V. Mujica, and E. Medina, Phys. Rev. B 101, 241410(R) (2020) makes a few points related to the validity of our model, especially in the light of the interpretation of Bardarsons theorem: in the presence of time reversal symmetry and for half-integral spin the transmission eigenvalues of the two terminal scattering matrix come in (Kramers) degenerate pairs. The authors of the comment first propose an ansatz for the wave function in the spin active region and go on to show that the resulting transmission does not show spin dependence, reasoning that spin dependence would violate Bardarsons assertion. Here we clearly show that the ansatz presented assumes spin-momentum independence from the outset and thus just addresses the spinless particle problem. We then find the appropriate eigenfunction contemplating spin-momentum coupling and show that the resulting spectrum obeys Bardarsons theorem. Finally we show that the allowed wavevectors are the ones assumed in the original paper and thus the original conclusions follow. We recognize that the Hamiltonian in our paper written in local coordinates on a helix was deceptively simple and offer the expressions of how it should be written to more overtly convey the physics involved. The relation between spin polarization and torque becomes clear, as described in our paper. This response is a very important clarification in relation to the implications of Bardarsons theorem concerning the possibility of spin polarization in one dimensional systems in the linear regime.

تحميل البحث