How does an external electric field trigger the Cassie-Baxter-Wenzel wetting transition on a textured surface?


الملخص بالإنكليزية

Understanding the critical condition and mechanism of the droplet wetting transition between Cassie-Baxter state and Wenzel state triggered by an external electric field is of considerable importance because of its numerous applications in industry and engineering. However, such a wetting transition on a patterned surface is still not fully understood, e.g., the effects of electro-wetting number, geometry of the patterned surfaces, and droplet volume on the transition have not been systematically investigated. In this paper, we propose a theoretical model for the Cassie-Baxter- Wenzel wetting transition triggered by applying an external voltage on a droplet placed on a mircopillared surface or a porous substrate. It is found that the transition is realized by lowering the energy barrier created by the intermediate composite state considerably, which enables the droplet to cross the energy barrier and complete the transition process. Our calculations also indicate that for fixed droplet volume, the critical electrowetting number (voltage) will increase (decrease) along with the surface roughness for a micro-pillar patterned (porous) surface, and if the surface roughness is fixed, a small droplet tends to ease the critical electrowetting condition for the transition. Besides, three dimensional phase diagrams in terms of electrowetting number, surface roughness, and droplet volume are constructed to illustrate the Cassie-Baxter-Wenzel wetting transition. Our theoretical model can be used to explain the previous experimental results about the Cassie-Baxter-Wenzel wetting transition reported in the literature.

تحميل البحث