Scanning diamond magnetometers based on the optically detected magnetic resonance of the nitrogen-vacancy centre offer very high sensitivity and non-invasive imaging capabilities when the stray fields emanating from ultrathin magnetic materials are sufficiently low (< 10 mT). Beyond this low-field regime, the optical signal quenches and a quantitative measurement is challenging. While the field-dependent NV photoluminescence can still provide qualitative information on magnetic morphology, this operation regime remains unexplored particularly for surface magnetisation larger than $sim$ 3 mA. Here, we introduce a multi-angle reconstruction technique (MARe) that captures the full nanoscale domain morphology in all magnetic-field regimes leading to NV photoluminescence quench. To demonstrate this, we use [Ir/Co/Pt]$_{14}$ multilayer films with surface magnetisation an order of magnitude larger than previous reports. Our approach brings non-invasive nanoscale magnetic field imaging capability to the study of a wider pool of magnetic materials and phenomena.