We use Pantheon Type Ia supernova (SN Ia) apparent magnitude, DES-3yr binned SN Ia apparent magnitude, Hubble parameter, and baryon acoustic oscillation measurements to constrain six spatially flat and non-flat cosmological models. These sets of data provide mutually consistent cosmological constraints in the six cosmological models we study. A joint analysis of these data sets provides model-independent estimates of the Hubble constant, $H_0=68.8pm1.8 rm{km s^{-1} Mpc^{-1}}$, and the non-relativistic matter density parameter, $Omega_{rm m_0}=0.294pm0.020$. Although the joint constraints prefer mild dark energy dynamics and a little spatial curvature, they do not rule out dark energy being a cosmological constant and flat spatial hypersurfaces. We also add quasar angular size and H II starburst galaxy measurements to the combined data set and find more restrictive constraints.