Categorical braid group actions and cactus groups


الملخص بالإنكليزية

Let $mathfrak{g}$ be a semisimple simply-laced Lie algebra of finite type. Let $mathcal{C}$ be an abelian categorical representation of the quantum group $U_q(mathfrak{g})$ categorifying an integrable representation $V$. The Artin braid group $B$ of $mathfrak{g}$ acts on $D^b(mathcal{C})$ by Rickard complexes, providing a triangulated equivalence $Theta_{w_0}:D^b(mathcal{C}_mu) to D^b(mathcal{C}_{w_0(mu)})$, where $mu$ is a weight of $V$ and $Theta_{w_0}$ is a positive lift of the longest element of the Weyl group. We prove that this equivalence is t-exact up to shift when $V$ is isotypic, generalising a fundamental result of Chuang and Rouquier in the case $mathfrak{g}=mathfrak{sl}_2$. For general $V$, we prove that $Theta_{w_0}$ is a perverse equivalence with respect to a Jordan-Holder filtration of $mathcal{C}$. Using these results we construct, from the action of $B$ on $V$, an action of the cactus group on the crystal of $V$. This recovers the cactus group action on $V$ defined via generalised Schutzenberger involutions, and provides a new connection between categorical representation theory and crystal bases. We also use these results to give new proofs of theorems of Berenstein-Zelevinsky, Rhoades, and Stembridge regarding the action of symmetric group on the Kazhdan-Lusztig basis of its Specht modules.

تحميل البحث