We develop a model-independent procedure to single out static and spherically symmetric wormhole solutions based on the general relativistic Poynting-Robertson effect and the extension of the ray-tracing formalism in generic static and spherically symmetric wormhole metrics. Simulating the flux emitted by the Poynting-Robertson critical hypersurface (i.e., a stable structure where gravitational and radiation forces attain equilibrium) or also from another X-ray source in these general geometrical environments toward a distant observer, we are able to reconstruct, only locally to the emission region, the wormhole solutions which are in agreement with the high-energy astrophysical observational data. This machinery works only if wormhole evidences have been detected. Indeed, in our previous paper we showed how the Poynting-Robertson critical hypersurfaces can be located in regions of strong gravitational field and become valuable astrophysical probe to observationally search for wormholes existence. As examples, we apply our method to selected wormhole solutions in different extended theories of gravity by producing lightcurves, spectra, and images of an accretion disk. In addition, the present approach may constitute a procedure to also test the theories of gravity. Finally, we discuss the obtained results and draw the conclusions.