Dirac Metamaterial Assembled by Pyrene Derivative and its Topological Photonics


الملخص بالإنكليزية

Over the past decade, topology has garnered great attention in a wide area of physics. In particular, it has exerted influence on photonics because carefully engineered photonic crystals and metamaterials can help explore the non-trivial state of materials. In this regard, all dielectric metamaterials with large anisotropy, and dipole and multipole Mie resonators have played an increasingly important role in topological photonics. Advantages of Mie resonators make it possible to quest for non-trivial states in three dimensions and theoretical calculation supports its potential. However, it is very difficult to demonstrate this experimentally because it is hard to make the metacrystal by anisotropic meta-atoms despite much effort. Here we report a Dirac metamaterial for 3D topological photonics. It is implemented by a metacrystal self-assembled by a molecule, HYLION-12 which has both anisotropic polarizability and ring current. As its peculiar properties, it has an exotic optical constant that can be used for the electric and magnetic hyperbolic metamaterial, and the double hyperbolic metamaterial in the ultraviolet region. It also showed 142% of reflectance at 242nm as an amplified reflector and asymmetric transmittance up to 30% through the opaque substrate as a Huygens source under 300nm. Furthermore, it demonstrated various phenomena of topological photonics such as Pancharatnam-Berry and waveguide phase merging, wavefront shaping and waveguide on edges as a 3D topological photonic material. The new strategy using polyaromatic hydrocarbons (PAHs) is expected to be an effective way to realize 3D topological photonics.

تحميل البحث