Diameter and Ricci curvature estimates for long-time solutions of the Kahler-Ricci flow


الملخص بالإنكليزية

It is well known that the Kahler-Ricci flow on a Kahler manifold $X$ admits a long-time solution if and only if $X$ is a minimal model, i.e., the canonical line bundle $K_X$ is nef. The abundance conjecture in algebraic geometry predicts that $K_X$ must be semi-ample when $X$ is a projective minimal model. We prove that if $K_X$ is semi-ample, then the diameter is uniformly bounded for long-time solutions of the normalized Kahler-Ricci flow. Our diameter estimate combined with the scalar curvature estimate in [34] for long-time solutions of the Kahler-Ricci flow are natural extensions of Perelmans diameter and scalar curvature estimates for short-time solutions on Fano manifolds. We further prove that along the normalized Kahler-Ricci flow, the Ricci curvature is uniformly bounded away from singular fibres of $X$ over its unique algebraic canonical model $X_{can}$ if the Kodaira dimension of $X$ is one. As an application, the normalized Kahler-Ricci flow on a minimal threefold $X$ always converges sequentially in Gromov-Hausdorff topology to a compact metric space homeomorphic to its canonical model $X_{can}$, with uniformly bounded Ricci curvature away from the critical set of the pluricanonical map from $X$ to $X_{can}$.

تحميل البحث