Differential Privacy-Based Online Allocations towards Integrating Blockchain and Edge Computing


الملخص بالإنكليزية

In recent years, the blockchain-based Internet of Things (IoT) has been researched and applied widely, where each IoT device can act as a node in the blockchain. However, these lightweight nodes usually do not have enough computing power to complete the consensus or other computing-required tasks. Edge computing network gives a platform to provide computing power to IoT devices. A fundamental problem is how to allocate limited edge servers to IoT devices in a highly untrustworthy environment. In a fair competition environment, the allocation mechanism should be online, truthful, and privacy safe. To address these three challenges, we propose an online multi-item double auction (MIDA) mechanism, where IoT devices are buyers and edge servers are sellers. In order to achieve the truthfulness, the participants private information is at risk of being exposed by inference attack, which may lead to malicious manipulation of the market by adversaries. Then, we improve our MIDA mechanism based on differential privacy to protect sensitive information from being leaked. It interferes with the auction results slightly but guarantees privacy protection with high confidence. Besides, we upgrade our privacy-preserving MIDA mechanism such that adapting to more complex and realistic scenarios. In the end, the effectiveness and correctness of algorithms are evaluated and verified by theoretical analysis and numerical simulations.

تحميل البحث