Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ varphi(n)$ be the Euler totient function. The result $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+Oleft ( x(log x)^{2/3}(loglog x)^{1/3}right ) $ was proved very recently. This note presents a short elementary proof, and sharpen the error term to $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+O(x) $. In addition, the first proofs of the asymptotics formulas for the finite sums $ sum_{nleq x}psi([x/n])=(15/pi^2)xlog x+O(xlog log x) $, and $ sum_{nleq x}sigma([x/n])=(pi^2/6)xlog x+O(x log log x) $ are also evaluated here.