Generation of spin currents by a temperature gradient in a two-terminal device


الملخص بالإنكليزية

Theoretical and experimental investigations of the interaction between spins and temperature gradients are vital for the development of spin caloritronics, and can dictate the design of future spintronics devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two reservoirs connected by a one-dimensional link. The reservoirs are kept at different temperatures. We show the existence of a spin current in this system by studying the dynamics that follows a spin-flip of an atom in the link. We argue that the dynamics in the link can be described using an inhomogeneous Heisenberg chain whose couplings are defined by the local temperature. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current. Therefore, our study offers a way to simulate certain features of the spin Seebeck effect with cold atoms.

تحميل البحث