In the early stage of epidemics, individuals determination on adopting protective measures, which can reduce their risk of infection and suppress disease spreading, is likely to depend on multiple information sources and their mutual confirmation due to inadequate exact information. Here we introduce the inter-layer mutual confirmation mechanism into the information-disease interacting dynamics on multiplex networks. In our model, an individual increases the information transmission rate and willingness to adopt protective measures once he confirms the authenticity of news and severity of disease from neighbors status in multiple layers. By using the microscopic Markov chain approach, we analytically calculate the epidemic threshold and the awareness and infected density in the stationary state, which agree well with simulation results. We find that the increment of epidemic threshold when confirming the aware neighbors on communication layer is larger than that of the contact layer. On the contrary, the confirmation of neighbors awareness and infection from the contact layer leads to a lower final infection density and a higher awareness density than that of the communication layer. The results imply that individuals explicit exposure of their infection and awareness status to neighbors, especially those with real contacts, is helpful in suppressing epidemic spreading.