Work fluctuations due to partial thermalizations in two-level systems


الملخص بالإنكليزية

We study work extraction processes mediated by finite-time interactions with an ambient bath -- emph{partial thermalizations} -- as continuous time Markov processes for two-level systems. Such a stochastic process results in fluctuations in the amount of work that can be extracted and is characterized by the rate at which the system parameters are driven in addition to the rate of thermalization with the bath. We analyze the distribution of work for the case where the energy gap of a two-level system is driven at a constant rate. We derive analytic expressions for average work and lower bound for the variance of work showing that such processes cannot be fluctuation-free in general. We also observe that an upper bound for the Monte Carlo estimate of the variance of work can be obtained using Jarzynskis fluctuation-dissipation relation for systems initially in equilibrium. Finally, we analyse work extraction cycles by modifying the Carnot cycle, incorporating processes involving partial thermalizations and obtain efficiency at maximum power for such finite-time work extraction cycles under different sets of constraints.

تحميل البحث