Does Invariant Risk Minimization Capture Invariance?


الملخص بالإنكليزية

We show that the Invariant Risk Minimization (IRM) formulation of Arjovsky et al. (2019) can fail to capture natural invariances, at least when used in its practical linear form, and even on very simple problems which directly follow the motivating examples for IRM. This can lead to worse generalization on new environments, even when compared to unconstrained ERM. The issue stems from a significant gap between the linear variant (as in their concrete method IRMv1) and the full non-linear IRM formulation. Additionally, even when capturing the right invariances, we show that it is possible for IRM to learn a sub-optimal predictor, due to the loss function not being invariant across environments. The issues arise even when measuring invariance on the population distributions, but are exacerbated by the fact that IRM is extremely fragile to sampling.

تحميل البحث