Enhancer-promoter interactions (EPIs) regulate the expression of specific genes in cells, and EPIs are important for understanding gene regulation, cell differentiation and disease mechanisms. EPI identification through the wet experiments is costly and time-consuming, and computational methods are in demand. In this paper, we propose a deep neural network-based method EPIHC based on sequence-derived features and genomic features for the EPI prediction. EPIHC extracts features from enhancer and promoter sequences respectively using convolutional neural networks (CNN), and then design a communicative learning module to captures the communicative information between enhancer and promoter sequences. EPIHC also take the genomic features of enhancers and promoters into account. At last, EPIHC combines sequence-derived features and genomic features to predict EPIs. The computational experiments show that EPIHC outperforms the existing state-of-the-art EPI prediction methods on the benchmark datasets and chromosome-split datasets, and the study reveal that the communicative learning module can bring explicit information about EPIs, which is ignore by CNN. Moreover, we consider two strategies to improve performances of EPIHC in the cross-cell line prediction, and experimental results show that EPIHC constructed on training cell lines exhibit improved performances for the other cell lines.