Three body resonant interactions between Rydberg atoms are considered in order to perform few-body quantum gates. So far, the resonances found in cesium or rubidium atoms relied on an adjacent two-body resonance which ceases to exist for principal quantum numbers above $n simeq 40$. We have proposed recently a new class of 3-body interaction resonances in alkali-metal Rydberg atoms [P. Cheinet textit{et al.}, Quant. Elect. textbf{50}, 213 (2020)], which circumvienes this limit. We investigate here the relative strength between this new class of 3-body interaction resonance and quasi-forbidden 2-body interaction resonances in rubidium and cesium Rydberg atoms. We then identify the best case scenario for detecting and using this 3-body interaction.