The classic singularity theorems of General Relativity rely on energy conditions that can be violated in semiclassical gravity. Here, we provide motivation for an energy condition obeyed by semiclassical gravity: the smeared null energy condition (SNEC), a proposed bound on the weighted average of the null energy along a finite portion of a null geodesic. We then prove a semiclassical singularity theorem using SNEC as an assumption. This theorem extends the Penrose theorem to semiclassical gravity. We also apply our bound to evaporating black holes and the traversable wormhole of Maldacena-Milekhin-Popov, and comment on the relationship of our results to other proposed semiclassical singularity theorems.