Nonlinear Alfven Wave Model of Stellar Coronae and Winds from the Sun to M dwarfs


الملخص بالإنكليزية

M dwarfs atmosphere and wind is expected to be highly magnetized. The nonlinear propagation of Alfven wave could play a key role in both heating the stellar atmosphere and driving the stellar wind. Along this Alfven wave scenario, we carried out the one-dimensional compressive magnetohydrodynamic (MHD) simulation about the nonlinear propagation of Alfven wave from the M dwarfs photosphere, chromosphere to the corona and interplanetary space. Based on the simulation results, we develop the semi-empirical method describing the solar and M dwarfs coronal temperature, stellar wind velocity, and winds mass loss rate. We find that M dwarfs coronae tend to be cooler than solar corona, and that M dwarfs stellar winds would be characterized with faster velocity and much smaller mass loss rate compared to those of the solar wind.

تحميل البحث