Planar narrow-band-pass filter based on Si resonant metasurface


الملخص بالإنكليزية

Optically resonant dielectric metasurfaces offer unique capability to fully control the wavefront, polarisation, intensity or spectral content of light based on the excitation and interference of different electric and magnetic Mie multipolar resonances. Recent advances of the wide accessibility in the nanofabrication and nanotechnologies have led to a surge in the research field of high-quality functional optical metasurfaces which can potentially replace or even outperform conventional optical components with ultra-thin feature. Replacing conventional optical filtering components with metasurface technology offers remarkable advantages including lower integration cost, ultra-thin compact configuration, easy combination with multiple functions and less restriction on materials. Here we propose and experimentally demonstrate a planar narrow-band-pass filter based on the optical dielectric metasurface composed of Si nanoresonators in array. A broadband transmission spectral valley (around 200~nm) has been realised by combining electric and magnetic dipole resonances adjacent to each other. Meanwhile, we obtain a narrow-band transmission peak by exciting a high-quality leaky mode which is formed by partially breaking a bound state in the continuum generated by the collective longitudinal magnetic dipole resonances in the metasurface. Our proposed metasurface-based filter shows a stable performance for oblique light incidence with small angles (within 10 deg). Our work imply many potential applications of nanoscale photonics devices such as displays, spectroscopy, etc.

تحميل البحث