Continuity of accretion from clumps to Class 0 high-mass protostars in SDC335


الملخص بالإنكليزية

The IRDC SDC335.579-0.292 (SDC335) is a massive star-forming cloud found to be globally collapsing towards one of the most massive star forming cores in the Galaxy. SDC335 hosts three high-mass protostellar objects at early stages of their evolution and archival ALMA Cycle 0 data indicate the presence of at least one molecular outflow in the region. Observations of molecular outflows from massive protostellar objects allow us to estimate the accretion rates of the protostars as well as to assess the disruptive impact that stars have on their natal clouds. The aim of this work is to identify and analyse the properties of the protostellar-driven molecular outflows within SDC335 and use these outflows to help refine the properties of the protostars. We imaged the molecular outflows in SDC335 using new data from the ATCA of SiO and Class I CH$_3$OH maser emission (~3 arcsec) alongside observations of four CO transitions made with APEX and archival ALMA CO, $^{13}$CO (~1 arcsec), and HNC data. We introduced a generalised argument to constrain outflow inclination angles based on observed outflow properties. We used the properties of each outflow to infer the accretion rates on the protostellar sources driving them and to deduce the evolutionary characteristics of the sources. We identify three molecular outflows in SDC335, one associated with each of the known compact HII regions. The outflow properties show that the SDC335 protostars are in the early stages (Class 0) of their evolution, with the potential to form stars in excess of 50 M$_{odot}$. The measured total accretion rate onto the protostars is $1.4(pm 0.1) times 10^{-3}$M$_{odot}$ yr$^{-1}$, comparable to the total mass infall rate toward the cloud centre on parsec scales of 2.5$(pm 1.0) times 10^{-3}$M$_{odot}$ yr$^{-1}$, suggesting a near-continuous flow of material from cloud to core scales. [abridged].

تحميل البحث