Smooth Fano intrinsic Grassmannians of type $(2,n)$ with Picard number two


الملخص بالإنكليزية

We introduce the notion of intrinsic Grassmannians which generalizes the well known weighted Grassmannians. An intrinsic Grassmannian is a normal projective variety whose Cox ring is defined by the Plucker ideal $I_{d,n}$ of the Grassmannian $mathrm{Gr}(d,n)$. We give a complete classification of all smooth Fano intrinsic Grassmannians of type $(2,n)$ with Picard number two and prove an explicit formula to compute the total number of such varieties for an arbitrary $n$. We study their geometry and show that they satisfy Fujitas freeness conjecture.

تحميل البحث