Let $K$ be a discretely-valued field. Let $Xrightarrow Spec K$ be a surface with trivial canonical bundle. In this paper we construct a weak Neron model of the schemes $Hilb^n(X)$ over the ring of integers $Rsubseteq K$. We exploit this construction in order to compute the Motivic Zeta Function of $Hilb^n(X)$ in terms of $Z_X$. We determine the poles of $Z_{Hilb^n(X)}$ and study its monodromy property, showing that if the monodromy conjecture holds for $X$ then it holds for $Hilb^n(X)$ too. Sit $K$ corpus cum absoluto ualore discreto. Sit $ Xrightarrow Spec K$ leuigata superficies cum canonico fasce congruenti $mathcal{O}_X$. In hoc scripto defecta Neroniensia paradigmata $Hilb^n(X)$ schematum super annulo integrorum in $K$ corpo, $R subset K$, constituimus. Ex hoc, Functionem Zetam Motiuicam $Z_{Hilb^n(X)}$, dato $Z_X$, computamus. Suos polos statuimus et suam monodromicam proprietatem studemus, coniectura monodromica, quae super $X$ ualet, ualere super $Hilb^n(X)$ quoque demostrando.