Non-linear stability of soliton solutions for massive tensor-multi-scalar-theories


الملخص بالإنكليزية

The aim of this paper is to study the stability of soliton-like static solutions via non-linear simulations in the context of a special class of massive tensor-multi-scalar-theories of gravity whose target space metric admits Killing field(s) with a periodic flow. We focused on the case with two scalar fields and maximally symmetric target space metric, as the simplest configuration where solitonic solutions can exist. In the limit of zero curvature of the target space $kappa = 0$ these solutions reduce to the standard boson stars, while for $kappa e 0$ significant deviations can be observed, both qualitative and quantitative. By evolving these solitonic solutions in time, we show that they are stable for low values of the central scalar field $psi_c$ while instability kicks in with the increase of $psi_c$. Specifically, in the stable region, the models oscillate with a characteristic frequency related to the fundamental mode. Such frequency tends to zero with the approach of the unstable models and eventually becomes imaginary when the solitonic solutions lose stability. As expected from the study of the equilibrium models, the change of stability occurs exactly at the maximum mass point, which was checked numerically with a very good accuracy.

تحميل البحث