Quantum chaos and ensemble inequivalence of quantum long-range Ising chains


الملخص بالإنكليزية

We use large-scale exact diagonalization to study the quantum Ising chain in a transverse field with long-range power-law interactions decaying with exponent $alpha$. We numerically study various probes for quantum chaos and eigenstate thermalization on the level of eigenvalues and eigenstates. The level-spacing statistics yields a clear sign towards a Wigner-Dyson distribution and therefore towards quantum chaos across all values of $alpha>0$. Yet, for $alpha<1$ we find that the microcanonical entropy is nonconvex (a mark for ensemble inequivalence). We argue that this apparent discrepancy is due to the fact that the spectrum is organized in energetically separated multiplets for $alpha<1$. While quantum chaotic behaviour develops within the individual multiplets, many multiplets dont overlap and dont mix with each other for finite system sizes $N$, as we analytically and numerically argue in the paper. Our findings suggest that a small fraction of the multiplets could persist at low energies for $alphall 1$ even for large $N$, giving rise there to ensemble inequivalence. Our findings are in sharp contrast with short-range systems where quantum chaos, eigenstate thermalization and convex microcanonical entropy are typically strictly related.

تحميل البحث