Directional electron-filtering at a superconductor-semiconductor interface


الملخص بالإنكليزية

We evaluate the microscopically relevant parameters for electrical transport of hybrid superconductor-semiconductor interfaces. In contrast to the commonly used geometrically constricted metallic systems, we focus on materials with dissimilar electronic properties like low-carrier density semiconductors combined with superconductors, without imposing geometric confinement. We find an intrinsic mode-selectivity, a directional momentum-filter, due to the differences in electronic band-structure, which creates a separation of electron reservoirs each at the opposite sides of the semiconductor, while at the same time selecting modes propagating almost perpendicular to the interface. The electronic separation coexists with a transport current dominated by Andreev reflection and low elastic back-scattering, both dependent on the gate-controllable electronic properties of the semiconductor.

تحميل البحث