Approches quantitatives de lanalyse des pr{e}dictions en traduction automatique neuronale (TAN)


الملخص بالإنكليزية

As part of a larger project on optimal learning conditions in neural machine translation, we investigate characteristic training phases of translation engines. All our experiments are carried out using OpenNMT-Py: the pre-processing step is implemented using the Europarl training corpus and the INTERSECT corpus is used for validation. Longitudinal analyses of training phases suggest that the progression of translations is not always linear. Following the results of textometric explorations, we identify the importance of the phenomena related to chronological progression, in order to map different processes at work in neural machine translation (NMT).

تحميل البحث