We propose a time-implicit, finite-element based space-time discretization of the necessary and sufficient optimality conditions for the stochastic linear-quadratic optimal control problem with the stochastic heat equation driven by linear noise of type $[X(t)+sigma(t)]dW(t)$, and prove optimal convergence w.r.t. both, space and time discretization parameters. In particular, we employ the stochastic Riccati equation as a proper analytical tool to handle the linear noise, and thus extend the applicability of the earlier work [16], where the error analysis was restricted to additive noise.