A subset $A$ of a semigroup $S$ is called a $chain$ ($antichain$) if $xyin{x,y}$ ($xy otin{x,y}$) for any (distinct) elements $x,yin S$. A semigroup $S$ is called ($anti$)$chain$-$finite$ if $S$ contains no infinite (anti)chains. We prove that each antichain-finite semigroup $S$ is periodic and for every idempotent $e$ of $S$ the set $sqrt[infty]{e}={xin S:exists ninmathbb N;;(x^n=e)}$ is finite. This property of antichain-finite semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-finite. Also we present an example of an antichain-finite semilattice that is not a union of finitely many chains.