An X-ray study for white dwarf binary AR Scorpii


الملخص بالإنكليزية

We report a study of the X-ray emission from the white dwarf/M-type star binary system AR Scorpii using archival data taken in 2016-2020. It has been known that the X-ray emission is dominated by the optically thin thermal plasma emission, and its flux level varies significantly over the orbital phase. The X-ray emission also contains a component that modulates with the beat frequency between the white dwarfs spin frequency and orbital frequency. In this new analysis, the 2020 data taken by NICER shows that the X-ray emission is modulating with the spin frequency as well as the beat frequency, indicating that part of the X-ray emission is coming from the white dwarfs magnetosphere. It is found that the signal of the spin frequency appears only at a specific orbital phase, while the beat signal appears over the orbital phase. We interpret the X-ray emission modulating with the spin frequency and the beat frequency as a result of the synchrotron emission from electrons with a smaller and larger pitch angle, respectively. In a long-term evolution, the beat pulse profile averaged over the orbital phase changed from a single-peak structure in 2016/2018 to a double-peak structure in 2020. The observed X-ray flux levels measured in 2016/2017 are higher than those measured in 2018/2020. The plasma temperature and amplitude of the orbital waveform might vary with time too. These results indicate that the X-ray emission from AR Scorpii evolves on a timescale of years. This long-term evolution would be explained by a super-orbital modulation related to, for example, a precession of the white dwarf, or a fluctuation of the system related to activity of the companion star.

تحميل البحث