On vanishing near corners of conductive transmission eigenfunctions


الملخص بالإنكليزية

In this paper, we consider the transmission eigenvalue problem associated with a general conductive transmission condition and study the geometric structures of the transmission eigenfunctions. We prove that under a mild regularity condition in terms of the Herglotz approximations of one of the pair of the transmission eigenfunctions, the eigenfunctions must be vanishing around a corner on the boundary. The Herglotz approximation can be regarded as the Fourier transform of the transmission eigenfunction in terms of the plane waves, and the growth rate of the transformed function can be used to characterize the regularity of the underlying wave function. The geometric structures derived in this paper include the related results in [5,19] as special cases and verify that the vanishing around corners is a generic local geometric property of the transmission eigenfunctions.

تحميل البحث