We report muon spin relaxation and magnetometry studies of bulk Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and MnNiGa, two materials which have recently been proposed to host topological magnetic states in thin lamella (antiskyrmions for Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and biskyrmions for MnNiGa), and show spin reorientation transitions in bulk. These measurements shed light on the magnetic dynamics surounding the two magnetic phase transitions in each material. In particular, we demonstrate that the behaviour approaching the higher temperature transition in both samples is best understood by considering a slow decrease in the frequency of dynamics with temperature, rather than the sharp critical slowing down typical of second order transitions. Furthermore, at low temperatures the two samples both show spin dynamics over a broad range of frequencies that persist below the spin reorienation transition. The dynamic behavior we identify gives new insight into the bulk magnetism of these materials that may help underpin the stabilization of the topologically non-trivial phases that are seen in thin lamellae.