Topological Floquet engineering of a 1D optical lattice via resonantly shaking with two harmonic frequencies


الملخص بالإنكليزية

We investigate the topological properties of a resonantly shaken one-dimensional optical lattice system, where the lattice position is periodically driven with two harmonic frequencies to generate one- and two-photon couplings between the two lowest orbitals. In a two-band approximation, we numerically show that degenerate edge states appear under a certain driving condition and that the corresponding topological phase is protected by the chiral symmetry of the periodically driven system. The systems micromotion is characterized with oscillating Zak phases and we find that the Zak phases are quantized only at the time when the chiral symmetry condition is explicitly satisfied. Finally, we describe the topological charge pumping effect which arises when the driving parameters are slowly modulated around a critical point, and investigate its adiabaticity for increasing the modulation frequency.

تحميل البحث