The linear and nonlinear instability of the Akhmediev breather


الملخص بالإنكليزية

The Akhmediev breather (AB) and its M-soliton generalization $AB_M$ are exact solutions of the focusing NLS equation periodic in space and exponentially localized in time over the constant unstable background; they describe the appearance of $M$ unstable nonlinear modes and their interaction, and they are expected to play a relevant role in the theory of periodic anomalous (rogue) waves (AWs) in nature. It is rather well established that they are unstable with respect to small perturbations of the NLS equation. Concerning perturbations of these solutions within the NLS dynamics, there is the following common believe in the literature. Let the NLS background be unstable with respect to the first $N$ modes; then i) if the $M$ unstable modes of the $AB_M$ solution are strictly contained in this set ($M<N$), then the $AB_M$ is unstable; ii) if $M=N$, the so-called saturation of the instability, then the $AB_M$ solution is neutrally stable. We argue instead that the $AB_M$ solution is always unstable, even in the saturation case $M=N$, and we prove it in the simplest case $M=N=1$. We first prove the linear instability, constructing two examples of $x$-periodic solutions of the linearized theory growing exponentially in time. Then we investigate the nonlinear instability using our previous results showing that i) a perturbed AB initial condition evolves into an exact Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence of ABs described in terms of elementary functions of the initial data, to leading order; ii) the AB solution is more unstable than the background solution, and its instability increases as $Tto 0$, where $T$ is the AB appearance parameter. Although the AB solution is linearly and nonlinearly unstable, it is relevant in nature, since its instability generates a FPUT recurrence of ABs. These results suitably generalize to the case $M=N>1$.

تحميل البحث