Minimizing back-action through entangled measurements


الملخص بالإنكليزية

When an observable is measured on an evolving coherent quantum system twice, the first measurement generally alters the statistics of the second one, which is known as measurement back-action. We introduce, and push to its theoretical and experimental limits, a novel method of back-action evasion, whereby entangled collective measurements are performed on several copies of the system. This method is inspired by a similar idea designed for the problem of measuring quantum work [Perarnau-Llobet textit{et al}., (https://doi.org/10.1103/PhysRevLett.118.070601) Phys. Rev. Lett. textbf{118}, 070601 (2017)]. By utilizing entanglement as a resource, we show that the back-action can be extremely suppressed compared to all previous schemes. Importantly, the back-action can be eliminated in highly coherent processes.

تحميل البحث