Competing energy scales in topological superconducting heterostructures


الملخص بالإنكليزية

Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes, exotic quasiparticles which have raised great expectations for storing and manipulating information in topological quantum computational schemes. The essential ingredients for their realization are spin non-degenerate metallic states proximitized to an s-wave superconductor. In this context, proximity-induced superconductivity in materials with a sizable spin-orbit coupling has been heavily investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. In this work, we systematically engineer an artificial topological superconductor by progressively introducing superconductivity (Nb) into metals with strong spin-orbital coupling (Pt) and 3D topological surface states (Bi2Te3). Through a longitudinal study of the character of superconducting vortices within s-wave superconducting Nb and proximity-coupled Nb/Pt and Nb/Bi2Te3, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Supported by a detailed theoretical model, our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties.

تحميل البحث