Constructive exact control of semilinear 1D wave equations by a least-squares approach


الملخص بالإنكليزية

It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation $partial_{tt}y-partial_{xx}y + g(y)=f 1_{omega}$, with Dirichlet boundary conditions, is exactly controllable in $H^1_0(0,1)cap L^2(0,1)$ with controls $fin L^2((0,1)times(0,T))$, for any $T>0$ and any nonempty open subset $omega$ of $(0,1)$, assuming that $gin mathcal{C}^1(R)$ does not grow faster than $betavert xvert ln^{2}vert xvert$ at infinity for some $beta>0$ small enough. The proof, based on the Leray-Schauder fixed point theorem, is however not constructive. In this article, we design a constructive proof and algorithm for the exact controllability of semilinear 1D wave equations. Assuming that $g^prime$ does not grow faster than $beta ln^{2}vert xvert$ at infinity for some $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $R$ with exponent $sin[0,1]$, we design a least-squares algorithm yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+s$ after a finite number of iterations.

تحميل البحث